WebToan.Com là thư viện mở ngành Toán học NÊN sao chép, chia sẻ, KHÔNG NÊN thương mại hoá.

Tập hợp và bài tập áp dụng – Số học 6

Danh mục: Số học 6 , Toán 6

Tập hợp trong phần số học 6 chương trình Toán lớp 6 là bài học đầu tiên mà các em cần nắm được để áp dụng cho các bài học tiếp theo.

Chúng ta cùng ôn lại kiến thức về tập hợp để hiểu rõ hơn.

I. Tóm tắt lý thuyết về Tập hợp

1. Cách viết tập hợp

• Tên tập hợp được viết bằng các chữ cái in hoa : A ; B ; C ;…

• Để viết tập hợp thường có hai cách :

– Liệt kê các phần tử của tập hợp

* Ví dụ : A = { 0 , 1 , 2 , 3}

– Chỉ ra tính chất đặc trưng cho các phần tử  của tập hợp đó

* Ví dụ : A = { x ∈ N | x < 4}

* Chú ý :

– Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu  “ ; ” (nếu có phần tử số  “ ,” )

– Mỗi phần tử được liệt kê một lần , thứ tự liệt kê tùy ý

2. Tập hợp các số tự nhiên

N = { 0; 1; 2 ; 3 ; 4 ;……}; N* = {1 ; 2 ; 3 ; 4; ……}

– Số 0 là số tự nhiên bé nhất

3. Số phần tử của một tập hợp

Một tập hợp có thể có một phần tử , có nhiều phần tử, có vô sô phần tử cũng có thể không có phần tử nào ( gọi là tập rỗng :  )

VD : A = { x , y}; B = { bút , thước }; C = { 1; 2 ; 3; 4; …..; 100 }; D = {Ø}

4. Tập hợp con

– Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B

– Kí hiệu : ⊂

5. Các dạng toán áp dụng

II. Các dạng toán về tập hợp

° Dạng 1 : Viết tập hợp

* Phương pháp:

– Liệt kê các phần tử của nó.

– Chỉ ra tính chất đặc trưng cho các phần tử của nó

* Bài tập vận dụng

♦ Bài toán 1 : A là tập hợp các số tự nhiên không quá 4

Viết tập hợp A bằng hai cách : liệt kê và chỉ ra tính chất đặc trưng của các phần tử

♦ Bài toán 2 : A là tập hợp các sô tự nhiên lớn hơn 5 và nhỏ hơn 9

Viết tập hợp A bằng hai cách : liệt kê và chỉ ra tính chất đặc trưng của các phần tử

♦ Bài toán 3: Cho các tập hợp.

A = { x ∈ N / x ≤ 7 }; B = { x ∈ N / x < 7 }; C = { x ∈ N / 6 <  x < 7 }

Viết các tập hợp A , B ,C bằng cách liệt kê các phần tử và cho biết số phần tử của tập hợp

 ° Dạng 2: Tìm số phần tử của 1 tập hợp

* Phương pháp:

– Để đếm các số tự nhiên từ a đến b (2 số liên tiếp cách nhau d đơn vị) ta dùng công thức sau:

 3294 0 (tức là: (số số hạng) = [(số cuối) – (số đầu)/[khoảng cách giữa 2 số liên tiếp]).

– Để tính tổng các số hạng cách đều nhau d đơn vị ta dùng công thức sau

  Tổng  = [(số đầu số cuối)* (số số hạng)]/2

* Bài tập vận dụng

♦ Bài toán 1 : Cho tập hợp K = {12 ; 15 ; 18; 21; …; 111; 114 ; 117}

a) Tính số phần tử của tập hợp K

b) Tính tổng M = 12 +15 +18 +21 … +114 +117

♦ Bài toán 2 : Cho tập hợp A = {3; 5; 7; 9}. Điền các kí hiệu ∈, ∉, ⊂ thích hợp vào []

a) 5 [] A; b) 6 [] A; c) {3; 7} [] A; c) {3; 7 ; 9} [] A

♦ Bài toán 3 : Tính số phần tử của tập hợp sau

a) A =  { x ∈ N / 8 < x < 27 }

b) B =  { x ∈ N / 2018 0.x = 2018 }

♦ Bài toán 4 :

Cho tập hợp M = { 8; 9; 10; …; 57}

a) Tìm số phần tử của tập hợp M ?

b) Viết tập hợp  M bằng cách chỉ ra tính chất đặc trưng cho các phần tử của tập hợp ?

Vui lòng nhập mật khẩu để tiếp tục

👉To Confessions đến các em học sinh và giáo viên được tốt nhất. Mọi người vui lòng nhập mật khẩu vào ô bên trên

🔎Nhận mật khẩu bằng cách xem hướng dẫn từ video này

‼️‼️‼️ Hướng dẫn lấy mật khẩu (làm theo video bên dưới)

🔜Sau khi lấy được Mã, quay lại điền vào ô Nhập Mật khẩu ở trên

pass

c) Cho N = { 13 ; 15 ; 17 ; … ; 59}. Hỏi N có phải là tập con của M không ?

♦ Bài toán 5 : Tính tổng sau.

a) S = 1 +3 +5+ … +2015 +2017

b) S = 7 +11 +15 +19+ … +51 +55

c) S = 2 +4 6 +… +2016 +2018

III. Hướng dẫn giải các bài toán về tập hợp

° Dạng 1: Tìm số phần tử của 1 tập hợp

◊ Đáp án bài toán 1:

Liệt kê: A = {0;1;2;3;4}

Chỉ ra tính chất đặc trưng: A = {x ∈ N | 0 ≤ x ≤ 4}

◊ Đáp án bài toán 2:

Liệt kê: A = {6;7;8}

Chỉ ra tính chất đặc trưng: A = {x ∈ N | 5 < x < 9}

◊ Đáp án bài toán 3:

A = {0;1;2;3;4;5;6;7}; B = {0;1;2;3;4;5;6}; C = Ø

◊ Đáp án bài toán 4:

a) A = {10; 12; 14; 16; 18; 20; 22; 24; 26}; B = {10; 15; 20; 25}

◊ Đáp án bài toán 5:

A = {21; 24; 27; 30; 33; 36; 39}

B = {25; 30; 35}

° Dạng 2: Tìm số phần tử của một tập hợp

◊ Đáp án bài toán 1:

a) Số phần tử của tập K (để ý các phần tử cách nhau 3 đơn vị) là: [(117-12)/3] 1 = 35 +1 = 36 (phần tử)

b) M = 12 +15 +18 +21 … +114 +117 = [(12 +117).36]/2 = 2322

◊ Đáp án bài toán 2:

a) 5 ∈ A; b) 6 ∉ A; c) {3; 7} ⊂ A; c) {3; 7; 9} ⊂ A

◊ Đáp án bài toán 3:

a) A =  { x ∈ N / 8 < x < 27 } ={9; 10; 11; …; 26}

⇒ Số phần tử của A là (26-9) 1 = 18.

b) B = {x ∈ N / 2018 0.x = 2018 } =  {x ∈ N / 0.x = 0} = {x|x ∈ N} hay B = N. vô số phần tử.

◊ Đáp án bài toán 4:

a) Số phần tử của M: (57 – 8) +1 = 50

b) M = {x ∈ N | 8 ≤ x ≤ 57}

c) N không là tập con của M vì 59 ∈ N nhưng 59 ∉ M.

◊ Đáp án bài toán 5:

a) S = 1 +3 +5 … +2015 +2017

– Ta có: số số hạng của S (các số cách nhau 2 đơn vị) là: [(2017 – 1)/2] +1 = 1009

– Tổng: S =  [(2017 +1).1009]/2 = 1018081.

b) S = 7 +11 +15 +19 … +51 +55

– Ta có: Số số hạng của S (các số cách nhau 4 đơn vị) là: [(55 – 7)/4] 1 = 13

– Tổng: S = [(55 +7).13]/2 = 403

c) S = 2 +4 +6 … +2016 +2018

– Ta có: Số số hạng của S (các số cách nhau 2 đơn vị) là: [(2018 – 2)/2] +1 = 1009

– Tổng: S =  [(2018 +2).1009]/2 = 1019090.

★★★ Danh sách các tài liệu, đề thi HOT ★★★

✔️ 240+ Đề thi toán lớp 9

✔️ 10+ Đề thi học sinh giỏi quốc gia

Bình luận
0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Bình luận fb
0
Would love your thoughts, please comment.x
()
x