WebToan.Com là thư viện mở ngành Toán học NÊN sao chép, chia sẻ, KHÔNG NÊN thương mại hoá.

Bài tập tuần 4 – Những hằng đẳng thức đáng nhớ (tiếp) – Đại số 8

Danh mục: Đại số 8 , Toán 8

Bài tập tuần 4 – Những hằng đẳng thức đáng nhớ (tiếp) – Đại số 8

 

Bài toán 1: Viết các biểu thức sau dưới dạng tích

a) $ \displaystyle {{x}^{3}}+8$

b) $ \displaystyle {{x}^{3}}-64$

c) $ \displaystyle 8{{x}^{3}}+1$

d) $ \displaystyle 27-{{x}^{3}}$

e) $ \displaystyle 125+8{{x}^{3}}$

f) $ \displaystyle {{x}^{9}}-27{{y}^{3}}$

Bài toán 2: Viết biểu thức sau dưới dạng tổng hoặc hiệu của các lập phương

a) $ \displaystyle \left( {x+2} \right)\left( {{{x}^{2}}-2x+4} \right)$

b) $ \displaystyle \left( {2-x} \right)\left( {{{x}^{2}}+2x+4} \right)$

c) $ \displaystyle \left( {x+3y} \right)\left( {9{{y}^{2}}-3xy+{{x}^{2}}} \right)$

d) $ \displaystyle \left( {4-\frac{x}{2}} \right)\left( {\frac{{{{x}^{2}}}}{4}+2x+16} \right)$

e) $ \displaystyle \left( {x+\frac{1}{3}} \right)\left( {{{x}^{2}}-\frac{x}{3}+\frac{1}{9}} \right)$

f) $ \displaystyle \left( {\frac{1}{4}-\frac{x}{5}} \right)\left( {\frac{{{{x}^{2}}}}{{25}}+\frac{x}{{20}}+\frac{1}{{16}}} \right)$

Bài toán 3: Rút gọn biểu thức

$ \displaystyle A=\left( {x-2} \right)\left( {{{x}^{2}}+2x+4} \right)-\left( {128+{{x}^{3}}} \right)$

$ \displaystyle B=\left( {2x+3y} \right)\left( {4{{x}^{2}}-6xy+9{{y}^{2}}} \right)-\left( {3x-2y} \right)\left( {9{{x}^{2}}+6xy+4{{y}^{2}}} \right)$

Bài toán 4: Tìm x

a) $ \displaystyle {{\left( {\frac{x}{2}-1} \right)}^{3}}+\left( {2-\frac{x}{2}} \right)\left( {4+x+\frac{{{{x}^{2}}}}{4}} \right)+\frac{3}{2}x\left( {\frac{{x+4}}{2}} \right)=16$

b) $ \displaystyle \left( {2x+2} \right)\left( {4{{x}^{2}}-4x+4} \right)-2x\left( {4{{x}^{2}}-2} \right)=15$

c) $ \displaystyle {{\left( {\frac{x}{3}-3} \right)}^{3}}-\left( {\frac{x}{3}-3} \right)\left( {\frac{{{{x}^{2}}}}{9}+x+9} \right)+9{{\left( {\frac{{x+3}}{3}} \right)}^{2}}=15$

d) $ \displaystyle 2x\left( {2x-5} \right)\left( {2x+5} \right)-\left( {2x+2} \right)\left( {4{{x}^{2}}-4x+4} \right)=3$

Bài toán 5: Tính giá trị biểu thức

$ \displaystyle M=\left( {7-2x} \right)\left( {4{{x}^{2}}+14x+49} \right)-\left( {64-8{{x}^{3}}} \right)$  tại $ \displaystyle x=1$

$ \displaystyle N={{x}^{3}}+{{y}^{3}}+6{{x}^{2}}{{y}^{2}}\left( {x+y} \right)+3xy\left( {{{x}^{2}}+{{y}^{2}}} \right)$  biết  $ \displaystyle x+y=1$

Vui lòng nhập mật khẩu để tiếp tục

👉To Confessions đến các em học sinh và giáo viên được tốt nhất. Mọi người vui lòng nhập mật khẩu vào ô bên trên

🔎Nhận mật khẩu bằng cách xem hướng dẫn từ video này

‼️‼️‼️ Hướng dẫn lấy mật khẩu (làm theo video bên dưới)

🔜Sau khi lấy được Mã, quay lại điền vào ô Nhập Mật khẩu ở trên

cuốn đức củacuonsg

$ \displaystyle P=\left( {2x-1} \right)\left( {4{{x}^{2}}-2x+1} \right)-\left( {1-2x} \right)\left( {1+2x+4{{x}^{2}}} \right)$  tại $ \displaystyle x=10$

$ \displaystyle Q={{\left( {\frac{x}{4}} \right)}^{3}}+{{\left( {\frac{y}{2}} \right)}^{3}}$ tại $ \displaystyle xy=4$  và  $ \displaystyle x+2y=8$

Bài toán 6: Chứng minh

$ \displaystyle {{\left( {A+B} \right)}^{3}}={{A}^{3}}+{{B}^{3}}+3AB\left( {A+B} \right)$

$ \displaystyle {{\left( {A-B} \right)}^{3}}={{A}^{3}}-{{B}^{3}}-3AB\left( {A-B} \right)$

Áp dụng tính:

a) $ \displaystyle {{21}^{3}}$

b) $ \displaystyle {{199}^{3}}$

c) $ \displaystyle {{18}^{3}}+{{2}^{3}}$

d) $ \displaystyle {{23}^{3}}-27$

Bài toán 7: Rút gọn

a) $ \displaystyle {{\left( {x+y} \right)}^{2}}+{{\left( {x-y} \right)}^{2}}-2{{x}^{2}}$

b) $ \displaystyle {{\left( {x+1} \right)}^{3}}-\left( {x-1} \right)\left( {{{x}^{2}}+x+1} \right)-3x\left( {x+1} \right)$

c) $ \displaystyle \left( {x+2y} \right)\left( {{{x}^{2}}-2xy+4{{y}^{2}}} \right)-\left( {x-2y} \right)\left( {{{x}^{2}}+2xy+4{{y}^{2}}} \right)+2{{y}^{3}}$

d) $ \displaystyle \left( {{{x}^{2}}+\frac{1}{3}x+\frac{1}{9}} \right)\left( {x-\frac{1}{3}} \right)-{{\left( {x-\frac{1}{3}} \right)}^{2}}$

e) $ \displaystyle {{\left( {x-2} \right)}^{3}}-x\left( {x+1} \right)\left( {x-1} \right)+6x\left( {x-3} \right)$

Bài toán 8: Tìm x

a) $ \displaystyle {{\left( {x+2} \right)}^{2}}-9=0$ d) $ \displaystyle \left( {x-1} \right)\left( {{{x}^{2}}+x+1} \right)+x\left( {x+2} \right)\left( {2-x} \right)=5$

b) $ \displaystyle {{x}^{2}}-2x+1=25$ e) $ \displaystyle 5x{{\left( {x-3} \right)}^{2}}-5{{\left( {x-1} \right)}^{3}}+15\left( {x+4} \right)\left( {x-4} \right)=5$

c) $ \displaystyle {{\left( {5x+1} \right)}^{2}}-\left( {5x-3} \right)\left( {5x+3} \right)=30$

Bài toán 9: Chứng minh các biểu thức sau không phụ thuộc vào x:

$ \displaystyle M=\left( {x+4} \right)\left( {x-4} \right)-2x\left( {3+x} \right)+{{\left( {3+x} \right)}^{2}}$

$ \displaystyle N=\left( {{{x}^{2}}+4} \right)\left( {x+2} \right)\left( {x-2} \right)-\left( {{{x}^{2}}+3} \right)\left( {{{x}^{2}}-3} \right)$

$ \displaystyle P=\left( {3x-2} \right)\left( {9{{x}^{2}}+6x+4} \right)-3\left( {9{{x}^{3}}-2} \right)$

$ \displaystyle Q={{\left( {3x+5} \right)}^{2}}+\left( {6x+10} \right)\left( {2-3x} \right)+{{\left( {2-3x} \right)}^{2}}$

★★★ Danh sách các tài liệu, đề thi HOT ★★★

✔️ 240+ Đề thi toán lớp 9

✔️ 10+ Đề thi học sinh giỏi quốc gia

Bình luận
0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Bình luận fb
0
Would love your thoughts, please comment.x
()
x