WebToan.Com là thư viện mở ngành Toán học NÊN sao chép, chia sẻ, KHÔNG NÊN thương mại hoá.

Đề thi vào 10 môn Toán TP Hà Nội 2018 có đáp án

Đề thi vào 10 THPT môn Toán, Sở giáo dục và đào tạo thành phố Hà Nội năm học 2018 – 2019. Ngày thi 7 tháng 6 năm 2018. Thời gian làm bài 120 phút (không kể thời gian giao đề). Có đáp án.

Bài I (2,0 điểm)

Cho hai biểu thức A = $ \displaystyle \frac{{\sqrt{x}+4}}{{\sqrt{x}-1}}$ và B = $ \displaystyle \frac{{3\sqrt{x}+1}}{{x+2\sqrt{x}-3}}-\frac{2}{{\sqrt{x}+3}}$ với x ≥ 0, x ≠ 1

1) Tính giá trị của biểu thức A khi x = 9.

2) Chứng minh B = $ \displaystyle \frac{1}{{\sqrt{x}-1}}$

3) Tìm tất cả giá trị của x để $ \displaystyle \frac{A}{B}\ge \frac{x}{4}+5$.

Bài II (2,0 điểm)

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Một mảnh đất hình chữ nhật có chu vi bằng 28 mét và độ dài đường chéo bằng 10 mét. Tính chiều dài và chiều rộng của mảnh đất đó theo đơn vị mét.

Bài III (2,0 điểm)

1) Giải hệ phương trình $ \displaystyle \left\{ \begin{array}{l}4x-\left| {y+2} \right|=3\\x+2\left| {y+2} \right|=3\end{array} \right.$.

2) Trong mặt  phẳng  tọa  độ  Oxy,  cho  đường  thẳng (d): y = (m + 2)x + 3 và parabol (P): y = x2.

a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt.

b) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có các hoành độ là các số nguyên.

Vui lòng nhập mật khẩu để tiếp tục

👉To Confessions đến các em học sinh và giáo viên được tốt nhất. Mọi người vui lòng nhập mật khẩu vào ô bên trên

🔎Nhận mật khẩu bằng cách xem hướng dẫn từ video này

‼️‼️‼️ Hướng dẫn lấy mật khẩu (làm theo video bên dưới)

🔜Sau khi lấy được Mã, quay lại điền vào ô Nhập Mật khẩu ở trên

cuốn đức củacuonsg

Bài IV (3,5 điểm)

Cho đường tròn (O; R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của  tia  AB  (S khác A).  Từ  điểm  S  vẽ  hai  tiếp  tuyến  SCSD với  đường tròn (O; R) sao cho điểm C nằm trên cung nhỏ AB (C, D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB.

1) Chứng minh năm điểm C, D, H, O, S thuộc đường tròn đường kính SO.

2) Khi SO = 2R, hãy tính độ dài đoạn thẳng SD theo R và tính số đo $ \displaystyle \widehat{{CSD}}$.

3) Đường thẳng đi qua điểm  A  và song song với đường thẳng  SC,  cắt đoạn thẳng  CD  tại điểm  K.  Chứng minh tứ giác  ADHK  là tứ giác nội tiếp và đường thẳng  BK  đi qua trung điểm của đoạn thẳng  SC.

4) Gọi  E  là  trung  điểm  của đoạn thẳng  BD  và  F  là hình chiếu vuông góc của điểm  E  trên đường thẳng  AD.  Chứng minh rằng, khi điểm  S  thay đổi trên tia đối của tia AB  thì điểm  F  luôn thuộc một đường tròn cố định.

Bài V (0,5 điểm)

Tìm giá trị nhỏ nhất của biểu thức P = $ \displaystyle \sqrt{{1-x}}+\sqrt{{1+x}}+2\sqrt{x}$.

Đáp án tham khảo chi tiết Đề thi Toán vào 10 Hà Nội năm 2018

Đề thi vào 10 môn Toán TP Hà Nội 2018 có đáp án

Đề thi vào 10 môn Toán TP Hà Nội 2018 có đáp án

Đề thi vào 10 môn Toán TP Hà Nội 2018 có đáp án

★★★ Danh sách các tài liệu, đề thi HOT ★★★

✔️ 240+ Đề thi toán lớp 9

✔️ 10+ Đề thi học sinh giỏi quốc gia

Bình luận
0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Bình luận fb
0
Would love your thoughts, please comment.x
()
x