WebToan.Com là thư viện mở ngành Toán học NÊN sao chép, chia sẻ, KHÔNG NÊN thương mại hoá.

Các trường hợp bằng nhau của tam giác

Danh mục: Hình học 7 , Toán 7

Các trường hợp bằng nhau của tam giác

 

1. Trường hợp cạnh – cạnh – cạnh (c.c.c)

Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

ΔABC và ΔA’B’C’ có:

AB = A’B’

BC = B’C’

AC = A’C’

⇒ ΔABC = ΔA’B’C’

 

2. Trường hợp cạnh – góc – cạnh (c.g.c)

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

ΔABC và ΔA’B’C’ có:

$ \displaystyle \left\{ \begin{array}{l}AB\text{ }=~A’B’\\\widehat{B}=\widehat{B’}\\BC\text{ }=~B’C’\end{array} \right.$

Vui lòng nhập mật khẩu để tiếp tục

👉To Confessions đến các em học sinh và giáo viên được tốt nhất. Mọi người vui lòng nhập mật khẩu vào ô bên trên

🔎Nhận mật khẩu bằng cách xem hướng dẫn từ video này

‼️‼️‼️ Hướng dẫn lấy mật khẩu (làm theo video bên dưới)

🔜Sau khi lấy được Mã, quay lại điền vào ô Nhập Mật khẩu ở trên

pass

⇒ ΔABC = ΔA’B’C’

Áp dụng: Nếu hai cạnh góc vuông của tam giác này lần lượt bằng hai cạnh góc vuông của tam giác kia thì hai tam giác vuông đó bằng nhau.

 

3. Trường hợp góc – cạnh – góc (g.c.g)

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và góc kề của tam giác kìa thì hai tam giác đó bằng nhau.

ΔABC và ΔA’B’C’ có:

$ \displaystyle \left\{ \begin{array}{l}\widehat{B}=\widehat{B’}\\BC\text{ }=~B’C’\\\widehat{C}=\widehat{C’}\end{array} \right.$

⇒ ΔABC = ΔA’B’C’

– Hệ quả 1: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

– Hệ quả 2. Nếu cạnh huyền và góc nhọn của tam giác vuông nay bằng cạnh huyền, góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

★★★ Danh sách các tài liệu, đề thi HOT ★★★

✔️ 240+ Đề thi toán lớp 9

✔️ 10+ Đề thi học sinh giỏi quốc gia

Bình luận
0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Bình luận fb
0
Would love your thoughts, please comment.x
()
x