I. Phương pháp dự đoán và quy nạp:
Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn
Sn = a1 + a2 + …. an (1)
Bằng cách nào đó ta biết được kết quả (dự đoán, hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được.
Ví dụ 1: Tính tổng Sn =1+3+5 +… + (2n -1)
Thử trực tiếp ta thấy : S1 = 1
S2 = 1 + 3 =22
S3 = 1+ 3+ 5 = 9 = 32
… … …
Ta dự đoán Sn = n2
Với n = 1; 2; 3 ta thấy kết quả đúng
Giả sử với n = k (k 1) ta có Sk = k 2 (2)
Ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 (3)
Thật vậy cộng 2 vế của (2) với 2k +1 ta có
1+3+5 +… + (2k – 1) + (2k +1) = k2 + (2k +1)
Vì k2 + (2k +1) = (k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2
Theo nguyên lý quy nạp bài toán được chứng minh
Vậy Sn = 1+3 + 5 + … + ( 2n -1) = n2
Tương tự ta có thể chứng minh các kết quả sau đây bằng phương pháp quy nạp toán học.
Đọc full tài liệu ngay dưới đây: Chuyên đề dãy số viết theo quy luật