Phần 1: Trắc nghiệm (2 điểm)
Câu 1: Cho tập hợp A={x∈N|0:x=0}, tập hợp A là:
A. A=∅ | B. A={0} | C. A={1;2;3;…;9} | D. A=N∗ |
Câu 2: Số liền sau số n−1 với n∈N∗ là:
A. n | B. n + 1 | C. n – 2 | D. n + 2 |
Câu 3: Số tự nhiên nhỏ nhất có hai chữ số chia hết cho cả 2;3;5 là:
A. 10 | B. 15 | C. 20 | D. 30 |
Câu 4: Kết quả của phép tính 3.42−34.42:27 là:
A. 1 | B. 3 | C. 0 | D. 10 |
Phần II: Tự luận (8 điểm)
Bài 1 (3 điểm): Thực hiện phép tính
a)420.67−190.67+33.230b)(24.3.52):{450:[450−(4.53−23.52)]}c)(22016+22017+22018+…+22030).(34.27−63.34:23)
Bài 2 (3 điểm): Tìm số tự nhiên x biết
a)2017−(x−7)=2016:2b)(3x−14)3−199=25.52+20000c)(2x−1)10=(2x−1)12
Bài 3:
a) Tìm hai số tự nhiên x, y biết: x−3=(x+2)y
b) Cho A=1+2+22+23+…+260. Chứng minh rằng A chia cho 3 và 7 đều có số dư là 1.