WebToan.Com là thư viện mở ngành Toán học NÊN sao chép, chia sẻ, KHÔNG NÊN thương mại hoá.

Đề thi khảo sát chất lượng HSG Toán 7 đợt 1

Câu I(6đ).

1. Rút gọn biểu thức: $ \displaystyle A=\frac{{{4}^{5}}{{.9}^{4}}-{{2.6}^{9}}}{{{2}^{10}}{{.3}^{8}}+{{6}^{8}}.20}$

2. So sánh: (-32)9 và (-18)13

3. Chứng tỏ rằng: 817– 279– 913 chia hết cho 405.

Câu II(4đ).

1. Tìm x biết:

a) $ \displaystyle \frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}$

b) $ \displaystyle \frac{x+3}{x+4}>1$

2. Có 16 tờ tiền mệnh giá 20 000đ, 50 000đ, 100 000đ. Tổng giá trị của mỗi loại mệnh giá đều bằng nhau. Hỏi mỗi loại có mấy tờ ?

Câu III(2đ).

Cho dãy tỉ số bằng nhau:

$ \displaystyle \frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}$

Vui lòng nhập mật khẩu để tiếp tục

👉To Confessions đến các em học sinh và giáo viên được tốt nhất. Mọi người vui lòng nhập mật khẩu vào ô bên trên

🔎Nhận mật khẩu bằng cách xem hướng dẫn từ video này

‼️‼️‼️ Hướng dẫn lấy mật khẩu (làm theo video bên dưới)

🔜Sau khi lấy được Mã, quay lại điền vào ô Nhập Mật khẩu ở trên

pass

Tìm giá trị biểu thức: M = $ \displaystyle \frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}$

Câu IV(6đ).

Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I cắt AH tại O. Chứng minh $ \displaystyle \widehat{BMO}=\widehat{CNO}$

d) Đường thẳng OI luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC

Câu V(2đ).

Tìm giá trị của số tự nhiên n để $ \displaystyle \frac{7n-8}{2n-3}$ có giá trị lớn nhất.

★★★ Danh sách các tài liệu, đề thi HOT ★★★

✔️ 240+ Đề thi toán lớp 9

✔️ 10+ Đề thi học sinh giỏi quốc gia

Bình luận
0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Bình luận fb
0
Would love your thoughts, please comment.x
()
x