WebToan.Com là thư viện mở ngành Toán học NÊN sao chép, chia sẻ, KHÔNG NÊN thương mại hoá.

Điều kiện về nghiệm của phương trình bậc hai

Điều kiện về nghiệm của phương trình bậc hai

 

Giải phương trình, tìm điều kiện về nghiệm của phương trình bậc hai là một nội dung quan trọng trong chương trình THCS, nhất là bồi dưỡng toán 9.

Các em cần phải nắm được các kiến thức về công thức nghiệm của PT bậc 2, Định lý Vi-ét các kiến thức có liên quan, các em cần có sự say mê, hứng thú với loại này và có điều kiện tiếp cận với nhiều dạng bài tập điển hình.

Các phương pháp tìm điều kiện về nghiệm của phương trình là :” Phương pháp so sánh nghiệm của phương trình bậc 2 với số 0” ;” Phương pháp so sánh nghiệm của phương trình bậc 2 với 1 số bất kỳ ”; “so sánh nghiệm của phương trình quy về phương trình bậc 2 ”.

A- Dấu của các nghiệm của phương trình bậc hai

Theo hệ thức Vi-ét nếu phương trình bậc hai $ a{{x}^{2}}+bx+c=0(a\ne 0)$: có nghiệm $ {{x}_{1}},{{x}_{2}}$ thì $ S={{x}_{1}}+{{x}_{2}}=\frac{-b}{a};P={{x}_{1}}.{{x}_{2}}=\frac{c}{a}$.

Do đó điều kiện để một phương trình bậc 2 :

– Có 2 nghiệm dương là: $ \Delta \ge 0;P>0;S>0.$

– Có 2 nghiệm âm là: $ \Delta \ge 0;P>0;S<0.$

– Có 2 nghiệm trái dấu là: $ P<0$ (Khi đó hiển nhiên $ \Delta >0$).

B- So sánh nghiệm của phương trình bậc 2 với một số

I/ So sánh nghiệm của phương trình bậc 2 với số 0

Trong nhiều trường hợp ta cần so sánh nghiệm của phương trình bậc 2 với một số cho trước, trong đó có nhiều bài toán đòi hỏi tìm điều kiện để phương trình bậc 2: $ a{{x}^{2}}+bx+c=0(a\ne 0)$ có ít nhất một nghiệm không âm.

Điều kiện về nghiệm của phương trình bậc hai

II/ So sánh nghiệm của phương trình bậc 2 với một số bất kỳ

Trong nhiều trường hợp để so sánh nghiệm của phương trình bậc 2 với một số bất kỳ ta có thể quy về trường hợp so sánh nghiệm của phương trình bậc 2 với số 0:

3689 1

Điều kiện về nghiệm của phương trình bậc hai

III/ Điều kiện về nghiệm của phương trình quy về phương trình bậc 2

VD1: Tìm giá trị của m để phương trình sau có nghiệm.

$ {{x}^{4}}+m{{x}^{2}}+2n-4=0$  (1)

Giải:  Đặt $ {{x}^{2}}=y\ge 0$. Điều kiện để phương trình (1) có nghiệm là phương trình: $ {{y}^{2}}+my+2m-4=0$ có ít nhất một nghiệm không âm ,

Vui lòng nhập mật khẩu để tiếp tục

👉To Confessions đến các em học sinh và giáo viên được tốt nhất. Mọi người vui lòng nhập mật khẩu vào ô bên trên

🔎Nhận mật khẩu bằng cách xem hướng dẫn từ video này

‼️‼️‼️ Hướng dẫn lấy mật khẩu (làm theo video bên dưới)

🔜Sau khi lấy được Mã, quay lại điền vào ô Nhập Mật khẩu ở trên

pass

Theo kết quả ở VD1 mục I , các giá trị của m cần tìm là: $ m\le 2$ .

Điều kiện về nghiệm của phương trình bậc hai

Điều kiện về nghiệm của phương trình bậc hai

Bài tập đề nghị:

Bài 1: Tìm các giá trị của m để tồn tại nghiệm không âm của phương trình: $ {{x}^{2}}-2x+(m-2)=0$

Bài 2: Tìm các giá trị của m để phương trình sau có nghiệm: $ {{x}^{2}}+2m\left| x-2 \right|-4x+{{m}^{2}}+3=0$

Bài 3: Tìm các giá trị của m để phương trình: $ (m-1){{x}^{2}}-(m-5)x+(m-1)=0$

có 2 nghiệm phân biệt lớn hơn -1.

Bài 4: Tìm các giá trị của m để phương trình: $ {{x}^{2}}+mx+-1=0$ có ít nhất 1 nghiệm lớn hơn hoặc bằng -2.

Bài 5: Tìm các giá trị của m để tập nghiệm của phương trình: $ {{x}^{4}}-2(m-1){{x}^{2}}-(m-3)=0$

a) Có 4 phần tử.

b) Có 3 phần tử.

c) Có 2 phần tử.

d) Có 1 phần tử.

★★★ Danh sách các tài liệu, đề thi HOT ★★★

✔️ 240+ Đề thi toán lớp 9

✔️ 10+ Đề thi học sinh giỏi quốc gia

Bình luận
0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Bình luận fb
0
Would love your thoughts, please comment.x
()
x