Chúng ta cùng ôn lại kiến thức về tập hợp để hiểu rõ hơn.
• Tên tập hợp được viết bằng các chữ cái in hoa : A ; B ; C ;…
• Để viết tập hợp thường có hai cách :
– Liệt kê các phần tử của tập hợp
* Ví dụ : A = { 0 , 1 , 2 , 3}
– Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó
* Ví dụ : A = { x ∈ N | x < 4}
* Chú ý :
– Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “ ; ” (nếu có phần tử số “ ,” )
– Mỗi phần tử được liệt kê một lần , thứ tự liệt kê tùy ý
N = { 0; 1; 2 ; 3 ; 4 ;……}; N* = {1 ; 2 ; 3 ; 4; ……}
– Số 0 là số tự nhiên bé nhất
Một tập hợp có thể có một phần tử , có nhiều phần tử, có vô sô phần tử cũng có thể không có phần tử nào ( gọi là tập rỗng : )
VD : A = { x , y}; B = { bút , thước }; C = { 1; 2 ; 3; 4; …..; 100 }; D = {Ø}
– Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B
– Kí hiệu : ⊂
* Phương pháp:
– Liệt kê các phần tử của nó.
– Chỉ ra tính chất đặc trưng cho các phần tử của nó
* Bài tập vận dụng
♦ Bài toán 1 : A là tập hợp các số tự nhiên không quá 4
Viết tập hợp A bằng hai cách : liệt kê và chỉ ra tính chất đặc trưng của các phần tử
♦ Bài toán 2 : A là tập hợp các sô tự nhiên lớn hơn 5 và nhỏ hơn 9
Viết tập hợp A bằng hai cách : liệt kê và chỉ ra tính chất đặc trưng của các phần tử
♦ Bài toán 3: Cho các tập hợp.
A = { x ∈ N / x ≤ 7 }; B = { x ∈ N / x < 7 }; C = { x ∈ N / 6 < x < 7 }
Viết các tập hợp A , B ,C bằng cách liệt kê các phần tử và cho biết số phần tử của tập hợp
° Dạng 2: Tìm số phần tử của 1 tập hợp
* Phương pháp:
– Để đếm các số tự nhiên từ a đến b (2 số liên tiếp cách nhau d đơn vị) ta dùng công thức sau:
(tức là: (số số hạng) = [(số cuối) – (số đầu)/[khoảng cách giữa 2 số liên tiếp]).
– Để tính tổng các số hạng cách đều nhau d đơn vị ta dùng công thức sau
Tổng = [(số đầu số cuối)* (số số hạng)]/2
* Bài tập vận dụng
♦ Bài toán 1 : Cho tập hợp K = {12 ; 15 ; 18; 21; …; 111; 114 ; 117}
a) Tính số phần tử của tập hợp K
b) Tính tổng M = 12 +15 +18 +21 … +114 +117
♦ Bài toán 2 : Cho tập hợp A = {3; 5; 7; 9}. Điền các kí hiệu ∈, ∉, ⊂ thích hợp vào []
a) 5 [] A; b) 6 [] A; c) {3; 7} [] A; c) {3; 7 ; 9} [] A
♦ Bài toán 3 : Tính số phần tử của tập hợp sau
a) A = { x ∈ N / 8 < x < 27 }
b) B = { x ∈ N / 2018 0.x = 2018 }
♦ Bài toán 4 :
Cho tập hợp M = { 8; 9; 10; …; 57}
a) Tìm số phần tử của tập hợp M ?
b) Viết tập hợp M bằng cách chỉ ra tính chất đặc trưng cho các phần tử của tập hợp ?
c) Cho N = { 13 ; 15 ; 17 ; … ; 59}. Hỏi N có phải là tập con của M không ?
♦ Bài toán 5 : Tính tổng sau.
a) S = 1 +3 +5+ … +2015 +2017
b) S = 7 +11 +15 +19+ … +51 +55
c) S = 2 +4 6 +… +2016 +2018
III. Hướng dẫn giải các bài toán về tập hợp
° Dạng 1: Tìm số phần tử của 1 tập hợp
◊ Đáp án bài toán 1:
Liệt kê: A = {0;1;2;3;4}
Chỉ ra tính chất đặc trưng: A = {x ∈ N | 0 ≤ x ≤ 4}
◊ Đáp án bài toán 2:
Liệt kê: A = {6;7;8}
Chỉ ra tính chất đặc trưng: A = {x ∈ N | 5 < x < 9}
◊ Đáp án bài toán 3:
A = {0;1;2;3;4;5;6;7}; B = {0;1;2;3;4;5;6}; C = Ø
◊ Đáp án bài toán 4:
a) A = {10; 12; 14; 16; 18; 20; 22; 24; 26}; B = {10; 15; 20; 25}
◊ Đáp án bài toán 5:
A = {21; 24; 27; 30; 33; 36; 39}
B = {25; 30; 35}
◊ Đáp án bài toán 1:
a) Số phần tử của tập K (để ý các phần tử cách nhau 3 đơn vị) là: [(117-12)/3] 1 = 35 +1 = 36 (phần tử)
b) M = 12 +15 +18 +21 … +114 +117 = [(12 +117).36]/2 = 2322
◊ Đáp án bài toán 2:
a) 5 ∈ A; b) 6 ∉ A; c) {3; 7} ⊂ A; c) {3; 7; 9} ⊂ A
◊ Đáp án bài toán 3:
a) A = { x ∈ N / 8 < x < 27 } ={9; 10; 11; …; 26}
⇒ Số phần tử của A là (26-9) 1 = 18.
b) B = {x ∈ N / 2018 0.x = 2018 } = {x ∈ N / 0.x = 0} = {x|x ∈ N} hay B = N. vô số phần tử.
◊ Đáp án bài toán 4:
a) Số phần tử của M: (57 – 8) +1 = 50
b) M = {x ∈ N | 8 ≤ x ≤ 57}
c) N không là tập con của M vì 59 ∈ N nhưng 59 ∉ M.
◊ Đáp án bài toán 5:
a) S = 1 +3 +5 … +2015 +2017
– Ta có: số số hạng của S (các số cách nhau 2 đơn vị) là: [(2017 – 1)/2] +1 = 1009
– Tổng: S = [(2017 +1).1009]/2 = 1018081.
b) S = 7 +11 +15 +19 … +51 +55
– Ta có: Số số hạng của S (các số cách nhau 4 đơn vị) là: [(55 – 7)/4] 1 = 13
– Tổng: S = [(55 +7).13]/2 = 403
c) S = 2 +4 +6 … +2016 +2018
– Ta có: Số số hạng của S (các số cách nhau 2 đơn vị) là: [(2018 – 2)/2] +1 = 1009
– Tổng: S = [(2018 +2).1009]/2 = 1019090.